Visual mismatch negativity indexes automatic lexicality detection
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Abstract

This study explores the automatic processing of lexicality and abstract linguistic
contrasts using visual mismatch negativity (vVMMN). Prior research has shown that
auditory mismatch negativity is sensitive to abstract linguistic contrast, but it
remains unclear if similar effects occur through the visual domain. Similarly, there
is some evidence of lexicality effects via vMMN, but previous work did not seem
to fully claim that lexicality detection is observed independent of attention. We
investigated whether lexicality contrasts (words and pseudowords) and abstract
contrasts between word classes could elicit vMMNs. Our findings indicate that
lexicality can generate vVMMNs, with significant ERP effects observed for word
contrasts. However, no vMMN was detected for the abstract contrast between
nouns and verbs. These results suggest that while lexical processing can occur
rapidly and automatically in the visual modality (extending predictive coding
accounts to include pre-attentive lexical-level representations), abstract
processing of visual linguistic information warrants further investigation.
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Introduction

A key question in neurolinguistics lies on when precisely the brain accesses word
representations and whether this process is automatic. Traditionally, lexico-
semantic access has been thought to occur around 350-400 ms after seeing or
hearing a word (Friederici, 2002; Hagoort, 2007). However, other authors have
since reported findings that suggest these processes may begin much earlier, at
around 50-200 ms (He et al., 2022; Pulvermdtiller et al., 2009). Similarly, there is
growing support for a degree of automaticity in early lexico-semantic and syntactic
processes, challenging previous assumptions about the necessity of attentional

control (Krauska & Lau, 2023; Krivochen, 2014).

To investigate the automaticity of processing lexico-semantic information, many
have utilized the mismatch negativity (MMN), an early component of auditory
event-related potentials (ERP) that shows high sensitivity to unexpected changes
in unattended stimuli. The MMN is typically elicited using an oddball paradigm,
where two types of stimuli are repeatedly presented: one type occurs frequently
(standards) and the other infrequently (deviants). When a deviant stimulus is
presented, the MMN appears as a more negative event-related potential compared
to the standard stimulus. This response occurs because the brain detects a
mismatch between the incoming stimulus and the memory representation of
recent stimuli (Naatanen et al., 2007), or because it updates a predictive model
when an unexpected stimulus is encountered (Bornkessel-Schlesewsky &

Schlesewsky, 2019; Winkler, 2007).

The MMN is a well-established and extensively utilized ERP component in research,
used to study language processing, language acquisition, autism, and various

neuropsychological conditions (Eulitz & Lahiri, 2004; Lu et al., 2015; O’Connor,



2012; Schall, 2016; Zarza et al., 2007). Its effectiveness lies in its sensitivity to
psychological differences. For instance, one study (Phillips et al., 2000) found that
English speakers exhibit an MMN response to a series of sounds that do not form
an oddball paradigm in terms of their physical features, but do form one in terms
of the phonological categories they fall into. However, if the same level of physical
variation is present in a series of sounds that do not form an oddball paradigm
based on their phonological categorization, the MMN response is absent.
Additionally, Kazanina and colleagues (2006) showed that Russian speakers, but
not Korean speakers, displayed an MMN for a contrast that is meaningful in

Russian but not in Korean.

These results suggest that the brain's change detection process, as indicated by
the MMN, incorporates the individual’s language knowledge. The brain categorizes
incoming stimuli, makes predictions about future stimuli, and updates its
predictive model when predictions are incorrect (Bornkessel-Schlesewsky &

Schlesewsky, 2019), all without the individual’s conscious attention.

Visual mismatch negativity and automatic lexical processing

When sounds are in the form of meaningful speech elements, they elicit a
characteristic ERP amplitude increase called "lexical enhancement," typically
occurring around 100-200 ms (He et al., 2022; Shtyrov et al., 2008). This
response has been shown to be sensitive to various lexical properties and has led
to conclusions that it reflects the activation of neural memory traces for stimulus

words (Shtyrov et al., 2013).

While auditory studies have provided substantial evidence for early automatic
lexical activation, visual experiments have typically presented stimuli in the

focus of attention, making it difficult to address questions of automaticity.



One way to bridge the gap is to adapt auditory MMN paradigms for the visual
modality. The visual mismatch negativity (vMMN), an analogue of the auditory
MMN, has been observed for non-linguistic graphical stimuli and can be elicited
independently of attention (Astikainen et al., 2022; Petro et al., 2023) by
deviations in various visual features including color (Czigler et al., 2002),
orientation (Astikainen & Hietanen, 2009; Kimura et al., 2010), movement (Pazo-
Alvarez et al., 2003), spatial frequency (Heslenfeld, 2003), contrast (Stagg et al.,
2004), and even abstract sequential regularities (e.g., "if, then..." rules; Stefanics
et al., 2011) in visual stimulation. While vMMN has been associated with neural
mechanisms of automatic visual change detection and short-term memory
(Czigler & Pato, 2009), it remains largely unexplored regarding its sensitivity to
long-term representations, such as word-specific lexical memory circuits
(Stefanics et al., 2014; Winkler & Czigler, 2012). Furthermore, visual presentation
also overcomes some inherent problems of spoken stimulus presentation such as

timing of stimulus duration for certain types of stimuli (Male et al., 2020).

Shtyrov et al. (2013) investigated the automaticity of lexical processing and found
that unattended words elicited ERPs when compared to pseudowords, starting
early on at 100 ms. This supports the notion of early and automatic lexical
processing in the visual domain, suggesting that lexical memory traces can be

activated rapidly and without attention.

However, there are some reservations regarding the outcome of the study. First,
the use of perifoveal presentation of stimuli could introduce variability in visual
acuity and attention that is difficult to control, specifically, some components like
the late positive complex (LPC) are affected by vision angle and not elicited even
parafoveally (Li et al., 2024). In relation to vMMN, in one study (Petro et al., 2023),

central (foveal) presentation of the stimuli with task-related and task-unrelated

4



stimuli being separated temporally produces a large deviant-standard ERP, while

parafoveal presentation did not result in detectable vMMNs.

Second, while the study shows that words elicited a different ERP on average than
nonwords, it does not show that participants were pre-attentively sensitive to the
contrast between words and nonwords. Words elicited different ERPs than
pseudowords regardless of whether they were standards or deviants; likewise,
deviants elicited MMNs relative to standards, and the magnitude of this MMN did
not differ as a function of whether the deviants and standards were words or
pseudowords. Shtyrov and colleagues (2013) tested all possible combinations—
word standard - word deviant, pseudoword standard - pseudoword deviant, word
- pseudoword, and pseudoword - word—and all these combinations elicited
similar MMN effects. The physical difference between standard and deviant in
these situations was always the same (standards ended with a K and deviants
with a H), so the MMN effect was due to the physical difference rather than to
lexical status. In other words, it is possible that words and pseudowords would
have elicited the same differences if they were not presented in an MMN oddball
paradigm at all, but were just mixed randomly. The fact that words and
pseudowords elicit different ERPs does not necessarily mean that the brain pre-

attentively categorizes them in a way that would elicit a (v)MMN.

Finally, the study may not have had sufficient statistical power to reliably separate
components related to lexicality processing from noise; while the number of trials
per condition (deviants and critical standards) was not revealed, the sample size
of 16 is relatively small for a vMMN study involving higher-level processing which
is required for words and lexicality. In comparison, other studies successfully
eliciting word-level vVMMNs have generally involved over 20 participants per group

(Hu et al., 2020; Wei et al., 2018).



Abstract processing of linguistic stimuli

Previous research has demonstrated that the MMN's sensitivity to auditory
changes is influenced by linguistic knowledge. For instance, Phillips et al. (2000)
and Kazanina et al. (2006) showed that MMN can be influenced by phonological
categories specific to a listener's language. However, these studies did not
conclusively demonstrate that purely abstract linguistic contrasts, without any

physical acoustic differences, can elicit MMN.

In a registered report, Politzer-Ahles and Jap (2024) investigated whether MMN
can be elicited by abstract linguistic contrasts devoid of reliable acoustic cues by
utilizing contrasts in English verb tenses marked by ablaut or vowel changes (e.g.
for the past deviant and present standard block, they presented gave, met, and
sank as deviant stimuli and pave, get, thank as critical standards in addition to
several other present-tense filler verbs as extra standards; a block might look like:
gave met sank chose sand bled pave...). Their findings indicated that purely
abstract linguistic contrasts could indeed elicit MMN, supporting the notion that
MMN is sensitive to higher-level linguistic processing. There are no equivalent
studies that we are aware of on the visual counterpart of MMN that test this

strongest possible interpretation of the abstract processing claim.

Hu et al. (2020) conducted a vVMMN study where participants were exposed to
oddball sequences of Chinese characters, with deviant words differing in semantic
categories from the standard words (e.g., action words versus color words). They
reported observing a visual mismatch negativity in response to these semantic
contrasts, although this finding was arguably influenced by their choice of time

window used in the analysis. The primary aim of their research was to investigate



the extraction of semantic information from radicals—orthographic components of
Chinese characters. Therefore, they used stimuli where the semantic contrast was
also indicated by the presence of a radical. Notably, in an experiment that used
stimuli without semantic radicals, no vMMN was observed. Therefore, this study
does not definitively demonstrate that the vVMMN can be generated based on

purely abstract linguistic contrasts (i.e., without an orthographic cue).

The present study

The present study has two goals: (1) To investigate whether lexicality effects can
generate reliable vMMNs (2) To test the visual analogue of the “abstract” MMN
elicited through auditory stimuli (Politzer-Ahles & Jap, 2024): can vMMNs be

generated by abstract linguistic contrasts?

Previous auditory MMN research demonstrates sensitivity to abstract linguistic
contrasts (e.g., tense distinctions; Politzer-Ahles & Jap, 2024), but analogous
evidence in the visual domain remains scarce. Critically, prior visual studies (e.g.,
Shtyrov et al., 2013) tested ERP differences between individual words and
pseudowords with explicit physical contrasts (e.g., final letters), leaving
unresolved whether the brain detects lexicality as an abstract category. For
instance, Shtyrov et al.’s (2013) design could not disentangle physical deviance
(e.g., “K"” vs. "H” endings) from lexical mismatch, as every deviant-standard pair
differed orthographically. In contrast, our paradigm tests whether the brain pre-
attentively distinguishes sets of words and pseudowords where lexicality is the
sole systematic contrast, with no reliable physical differences between categories.
This advances a theoretically distinct question: Does automatic detection of lexical
status rely on abstract linguistic representations, or merely on low-level

orthographic familiarity?



We have also ensured that our VMMN design is methodologically sound by
implementing: (1) foveal (central) presentation, which has been shown to more
reliably generate vMMNs under different task conditions (Petro et al., 2023); (2)
a task that has been applied to visual word presentation in an oddball paradigm
(Hu et al., 2020); (3) a set of stimuli that incorporates additional standards and
multiple deviant and critical standard tokens to prevent participants from tracking
orthographic features; and (4) sufficient sample size for reasonable statistical

power.

As for the second (2) research question, the most compelling evidence for this
effect would be a vMMN generated in a scenario where the deviant and standard
stimuli belong to different linguistic categories without any reliable physical cues
differentiating them. Observing a VMMN in such a context would broaden our
understanding of the types of information and representations the brain can
process without deliberate attention. In the auditory abstract MMN study (Politzer-
Ahles & Jap, 2024), the authors elicited MMN by presenting a morphosyntactic
distinction with no reliable physical contrast - using past- and present-tense
ablauting irregular English verbs. In this study, we attempt to elicit a visual
equivalent by presenting a word class contrast between Standard Indonesian (SI)
verbs and nouns that only differ visually by their final letter. We consider the word
class contrast to be more ‘abstract’ than the word-pseudoword contrast, as
distinguishing grammatical class requires access to the linguistic properties and
lexical specification of the word, where this higher-level process generated
relatively later ERPs like the LAN and N400 (Yudes et al., 2016). In comparison,
word-pseudoword distinctions can be based on familiarity of orthographic form,
for instance, participants have seen and will recognize the words in their language

but not the novel, newly presented pseudowords. These more basic, lower-level



processes to word recognition invoke earlier ERPs like the P150 and N200 (Coch
& Mitra, 2010), which are associated with orthographic familiarity and lexicality,

respectively.

This study not only offers methodological improvements—such as foveal
presentation, a robust oddball paradigm design, and a larger sample size—but
also provides theoretical contributions. Previous related work (Shtyrov et al., 2013)
showed that visual word forms with physical correlates differ in ERP responses,
but it remained unclear whether these differences were driven by genuine
mismatch detection at the lexical level. By demonstrating a reliable vMMN that is
elicited by words in a controlled paradigm, our data can extend predictive coding
accounts of perception. Specifically, the study may suggest that lexical-level
predictions, stored in the mental lexicon, can be activated under unattended

conditions and lead to prediction error signals when violated.

Method

Participants

We recruited 50 participants who are first-language speakers of Indonesian (Age
M= 34.68;range=22-46; SD=6.13, all female). Of these 50 participants, 10 were
excluded because of having insufficient trials remaining for analysis. Only
participants with at least 20 trials per condition out of 45 are included in the
analyses. They are right-handed through self-reported questionnaire and
neurotypical with unimpaired or corrected vision. Participants were adequately
informed of the experiment procedure, signed an informed consent form prior to
the start of the experiment, and were financially compensated for their time

(150HKD). This protocol has received ethics approval from the institutional review



board of the Research and Innovation Office at the Hong Kong Polytechnic

University (#HSEARS20180409003).

Power

We did not have comparable vMMN data (lexical processing or abstract linguistic
contrast) to run a power analysis, as such, when estimating the number of
participants and trials for sufficient statistical power in our analysis, we compared
our target effect conservatively to the lateralized readiness potential (LRPs), a
typically small component (Smulders & Miller, 2012) at around 1-4 pV which has
clear guidelines for statistical power. A previous study (Boudewyn et al., 2018)
argued that having at least 32 participants and 45 trials per condition was both
(1) sufficient for a high level of internal reliability for the ERP with a Cronbach’s
alpha of 0.7-0.9 (2) sufficient to detect even relatively small ERP differences in
within-subject experiment designs: Monte Carlo between-condition simulations
showing effects of 0.75 pV at over 90% probability while effects of 1 pV, 1.25 pVv
and 1.5upV all have peak (100%) probabilities of achieving p<.05. Effects larger
than 1.5 pV will achieve peak probability with as few as 20 participants, whereas
effects smaller than 0.75 pV (e.g. 0.5 pV and 0.25 pV) do experience improvement
in the probability of detecting a difference with larger sample sizes (with the range
between 12 and 32 participants) but remains lower than 0.8 (80%). A similar
study (Politzer-Ahles & Jap, 2024) on abstract MMNs calculated power using an
effect size of d = -0.37 with a mean amplitude of -0.84uV (SD = 2.28). As such,
we believe that the present study, by approximately matching this estimation
derived from a small-magnitude ERP with 40 participants and 45 trials per
condition (after pre-processing, an average of 39.3 [SD=4.62] artifact-free trials
per participant per condition) can detect subtle VMMNs elicited by high-level

processing in our current study and provides us with reasonable statistical power
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to detect small effect magnitudes, provided there is a true difference between the
deviants and standards of at least 0.75 pV (around 90% with our sample size and

trial number).

Materials

The stimuli are shown in Table 1. We presented 2 separate contrasts, namely,
word class (verb/noun) and lexicality (word/pseudoword). For the word class
contrast, we selected a relatively frequent set of three unambiguous nouns and
three unambiguous base-form-verbs (frequency is extracted from the Indonesian
mixed corpus, a part of the Leipzig Corpora Collection (Goldhahn et al., 2012)
Table 2). The words used as deviants in one block were used as critical standards
in another block and vice versa. This means the analyses involved comparing
words which appeared as deviants in one block to the same words appearing as
standards in a different block. The nouns and verbs differ from each other only in
the final grapheme, and as far as we can observe, there are no systematic
orthographic or phonological difference between these two sets. We avoided

homophones (e.g. magang can mean an intern [noun] or over-ripe [adj]).

Additionally, we added a set of extra filler standards for each block. This is
done to prevent the participants from tracking individual word frequencies, which
could also elicit a vMMN. For example, in a block where nouns (pakar, bakat, tarif
[expert, talent, fee]) are deviants and verbs (pakai, bakar, tarik [use, burn, pull])
are standards, if the three verbs are presented more frequently than the three
nouns, the participants could simply notice the fact that the latter set of words
occur much more frequently in the block—which might be sufficient to elicit a

vMMN without any influence of the abstract linguistic contrast between these two
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groups of words. As such, we added nine additional verbs to become extra
standards, whereby the block includes twelve standard items and three deviant
items. This ensures that verbs are presented more frequently than nouns in the
block, but no particular word is presented more frequently than any other; thus,
the only way participants could notice that there are standards and deviants is to
notice the abstract lexical category of the words. The frequency of each token
outside of the deviants and critical standards were randomized as such
participants could not recognize the oddball arrangement by noting how often a
specific word is repeated, and the only way the brain detects this contrast is from
the fact that most of the stimuli inside the block are verbs while only a few are

nouns.

Table 1 here

Table 2 here

The lexicality contrast between words and pseudowords involves one block with
words as deviants and pseudowords and standards, and another with the opposite.
The pseudoword stimuli are modifications of the word stimuli, with the final
grapheme changed resulting in an entity that is a pseudoword (a non-word that
is composed of phonemes that are ‘legal’ in Indonesian phonotactics and therefore
somewhat resemble a word, but has, in fact, no meaning in the lexicon). All stimuli
in the first four blocks have 5 graphemes and 2 syllables. We expect to find at
least a VMMN in the lexicality block, as this contrast has been reported multiple

times to elicit ERPs (Petro et al., 2023; Shtyrov et al., 2013).

Procedure

Participants read the information sheet and filled out a demographic questionnaire

and the informed consent form. While the EEG cap was being prepared, the
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experimenter explained to the participant that they will be pressing a button in
reaction to a change in the fixation cross. During the experiment, participants had
multiple opportunities for breaks (between each block, which lasted approximately
5 minutes each), and they could blink normally but were asked to avoid closing
their eyes for an extended period of time, and to attempt to sit still until a

between-block break.

The stimuli were presented in white font on the centre of a grey screen. The
presentation duration of each stimuli was 300ms and the interstimulus interval
was 600ms with a randomized jitter of 0-20ms (meaning the ISI was between
600-620ms). In each block, there were 45 deviants (15 trials for each unique item)
and 45 critical standards (15 for each item). Accounting for the extra standards,
the ratio between standards and deviants was approximately 85:15 for each block.
At least 20 standards were presented at the beginning of each block before any
deviant tokens were presented. Following this, each deviant was always preceded

by 4 to 9 standards. Each block ended with a standard.

Participants were instructed to ignore the experimental stimuli and to press
a button using their right index finger as quickly and accurately as possible when
detecting a change in the fixation cross that was presented in the middle of the
word. We used a cross-detection task that has argued to elicit vMMNs while
presenting single-words/characters in previous experiments (Hu et al., 2020). The
fixation cross (2.3cm x 2.3cm) changes by either having a longer vertical line or
a longer horizontal line. The cross change itself never occurs within 1800ms before
or after 900ms after the onset of a deviant or a critical standard: this is done to
anticipate the possible influence of a motor movement or task-related brain

response when looking at the ERPs in the deviants and critical standards. There
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were 50 fixation cross changes per block, and the experiment lasted for

approximately 30 minutes per participant.

Each type of block occurred once, and blocks were presented in two
pseudorandomized lists. Each participant only viewed one of the lists. The
presentation of stimulus and recording of triggers to the acquisition program were

conducted through EPrime 2 (Psychology Software Tools).

EEG acquisition and preprocessing

EEGs were recorded using 64 Ag-AgCl electrodes that were attached to the
participant’s scalp via an elastic cap with a 10-20 system. Conductive gel was used.
The cap had two dedicated electrodes for the left and right mastoids. To monitor
horizontal and vertical eye movements, two electrodes were fixed in the outer
canthi of each eye, and one more was placed below the left eye (the VEOG above
the left eye is integrated in the cap). Electrode impedances were kept below 5 kQ.
The EEG was amplified and digitized with a sampling rate of 1000 Hz with an
analog bandpass filter of 0.03-100Hz. The amplifier used was a SynAmps 2
(NeuroScan, Charlotte, NC, United States), and the cap was a 64-channel Quik-
Cap Neo Net (NeuroScan, Charlotte, NC, United States). A Stimtracker (Cedrus)
provided an interface between the experiment presentation software and EEG
acquisition. Continuous EEG data were acquired using Curry 7 acquisition software
(Compumedics NeuroScan) whereby the files were exported to the .cnt format
and analysed using EEGLAB (Delorme & Makeig, 2004) for preprocessing, and

FieldTrip (Oostenveld et al., 2011) for the statistical analysis.

The continuous data were re-referenced to the average of both mastoids and
segmented into epochs from 150 ms before and 750 ms after onset. These values

were chosen to ensure that the epochs can be as long as possible without
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overlapping with adjacent epochs, given the 300ms word presentation plus the
600-620ms ITI. These epochs were then demeaned per channel in each epoch
(the mean of the data from the entire epoch was subtracted from each data point,
as this may result in better ICA decompositions than baseline-correcting based on
pre-stimulus interval (Groppe et al., 2011). The epochs were then subjected to an
independent component analysis using the runica() command in EEGLAB (Makeig
et al., 1997); this divided the data into many independent components
corresponding to the number of channels, excluding mastoid electrodes, EOGs,
and bad channels that were previously marked. These components were
automatically identified using the IClabel() command (Pion-Tonachini et al., 2019a)
in EEGLAB. ICLabel is an algorithm that utilizes machine learning to identify
artifactual ICA components through topography and activity patterns. It assigns
each component a probability indicating its likelihood of belonging to one of seven
distinct classes, which include artifact categories such as muscle and eye
movement (Pion-Tonachini et al., 2019b). A threshold was applied to detect and
remove artifacts with a probability of 0.9 (90%) to be assigned as eye or muscle
components. This is a default conservative value recommended in optimized
preprocessing pipelines (Delorme, 2023). After the removal of components,
baseline correction was applied to the data with a 150 ms pre-stimulus-onset
baseline. Next, the epochs were run through a moving-window peak-to-peak
threshold function (window size of 200ms with a window step of 50ms and a
threshold of 80uV) for artefact detection; epochs with artifacts were marked for
removal based on this criterion. Finally, a 30 Hz low-pass filter (using the default

settings of the EEGLAB function pop_eedfiltnew) was applied.

For each condition, the vMMN is calculated by comparing the ERP elicited by

tokens when they are presented as standards to the ERP elicited by those same
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tokens when they are presented as deviants. For example, to test whether verb
deviants yield a vMMN, we compared the average of the ERPs for (pakai, bakar,
tarik [use, burn, pull]) when they were deviants, to the average of the ERPs for
(pakai, bakar, tarik [use, burn, pull]) when they were standards. A more negative
ERP response to these words when used as deviants than when used as standards

would be indicative of a vMMN.

Within the lexicality contrast, we tested the main effect of standard vs.
deviant (i.e., whether there is a vVMMN at all for this contrast) by comparing the
deviants to the standards. As described above, this ensures that ERPs elicited by
identical stimuli are compared (a stimulus that occurs as standards in one block
also occurs as deviants in another block), and since the analysis includes both
words and pseudowords this collapses across both directions of the contrast. To
see whether one direction of contrast (word standards to pseudoword deviants,
vs. pseudoword standards to word deviants) elicits a larger vMMN, we tested the
interaction by calculating a vMMN difference wave for each contrast (pseudoword
deviant minus pseudoword standard, word deviant minus word standard) and
comparing these to each other. Finally, we tested simple effects of standard-
deviant within each contrast (whether pseudoword deviants elicit more negative
ERPs than pseudoword standards, and whether word deviants elicit more negative
ERPs than word standards) by directly comparing the deviant to the standard
within that contrast. We report the simple effects for the sake of completeness,
but they are to be treated as tentative and exploratory if the interaction is not

statistically significant.

We followed the same procedure to test the main effect, interaction, and
simple effects within the verb-noun contrast. The following section explains how

each of these comparisons was carried out statistically.
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Statistical analysis

The statistical analysis was conducted using cluster-based permutation tests
(Maris & Oostenveld, 2007) over all the scalp electrodes in the vMMN time window
of 100 to 400ms. The advantage of this approach is that it allows testing for effects
anywhere on the scalp and any time in the epoch, while still controlling the
familywise false positive rate, and without the experimenter needing to choose
regions or time windows for generating mean amplitudes. The test works by
comparing a pair of ERPs at each channel and each sample, and identifying
clusters of spatiotemporally adjacent data points where the difference between
the two conditions exceeds some threshold; in our analysis, that threshold is one-

tailed p<.05 in a t-test for the whole epoch.

In other words, a t-test comparing two ERPs was performed at every sample
in every channel (note that sometimes the comparison was between standards
and deviants, but for the interaction test the comparison was between vMMN
difference waves), and if a series of several time points in a row on the same
channel and/or several adjacent channels at the same time all meet the
uncorrected one-tailed p<.05 threshold, they are treated as a "cluster". For any
sample to be included in a cluster, it needed to have at least two spatial
neighbouring electrodes that also meet the threshold (we used the minnbchan=2
function in the Fieldtrip implementation of the cluster-based test). Next, each
cluster is assigned a test statistic (in our case, the test statistic for a cluster is
derived by summing the t-values of all the samples in the cluster), and the largest
cluster-level test statistic in the epoch is taken as the observed test statistic for
the data. Next, the data are randomly permuted (i.e., within each subject, the
condition labels "deviant" and "standard" may be randomly switched) several

thousand times, and with each random permutation the abovementioned
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procedure of identifying clusters and calculating a test statistic is repeated. This
yields a permutation distribution of several thousand test statistics, against which
the original observed test statistic is compared. The proportion of permutation test
statistics that are larger than the original observed test statistic is the p-value for
the test; if there is a significant difference between the deviant and standard ERPs
then this value will be small (in other words, if there is a robust difference between
deviants and standards in the real data, then random permutations of the data
will rarely show a bigger difference than the real difference). The permutation

tests used 5000 iterations.

Results

Participants completed the fixation cross-change detection task with an “accuracy”
rate of 92% (SD = 0.29) and a mean reaction time from onset of cross change of
647 ms (SD = 377.5). We define “accuracy” here as participants responding within
5000 ms of the cross changing. Failing to respond within 5000 ms was coded as

an ‘inaccurate’ trial.

Figure 1 shows ERPs in channels displaying effects in response to the lexicality
contrast. Using cluster-based permutation tests, we did not observe a significant
ERP on the collapsed analysis of the lexicality contrast (p=0.051; 280ms to 365ms;
37 channels; see Figure 2 for the distribution of this effect). The lexicality
interaction test, a comparison between VvMMN difference waves, was not
significant (p=0.419). However, in the exploratory analysis of simple effects we
found a significant vVMMN for word deviants (Figure 1; p=0.021) with this
difference being driven by a cluster showing a frontocentral broadly distributed

(across 42 electrodes) negative shift from 275ms to 400ms . On the other hand,
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pseudoword (Figure 1) deviants did not elicit a significant vYMMN (p=0.632) in this

exploratory analysis.

Figure 1 here

Figure 2 here

We did not observe any significant standard-deviant differences in the word class
contrast (no negative clusters were identified for the main effect and individual
tests) and individually as nouns and verbs (Figure 3 shows the waveform and

topographical plots for the word class contrast collapsed across conditions).

Figure 3 does show an apparent positivity for noun deviants, compared to noun
standards. An exploratory one-tailed cluster test revealed a very marginal effect
for this contract (p=.100). This suggests that some other component (such as P3)

may have been sensitive to the noun-verb contrast, but the vMMN was not.

Figure 3 here

Discussion

The current study investigated whether the contrast between words and
pseudowords can generate vMMNSs, as well as whether thecontrast between nouns
and verbs can. The noun-verb contrast failed to elicit a vVMMN. The cluster test for
the lexicality contrast collapsed across conditions generated a borderline
significant main effect (p=.051; while we acknowledge that this is not significant
at the traditional alpha level, it is very close and suggestive of the fact that
lexicality vVMMNs may exist and may be discoverable in future studies using
comparable stimuli). When broken down into separate conditions, we did not
observe an effect for the pseudoword contrast, but the word contrast elicited a

significant ERP in the form of a broadly distributed VMMN between 275ms to
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400ms (although this potential difference was not supported by a significant

interaction).

Previous studies examining visual word processing via the vMMN has found effects
ranging from 100 to 400ms (Hu et al., 2020; Shtyrov et al., 2013; X. D. Wang et
al., 2012; Wei et al., 2018). Our observed lexicality vMMN peaks at around 320ms,
which is relatively late for a vMMN; this may be due to the high-level nature of
the contrast in addition to the location of the critical contrast (last letter of each
word). The primarily frontal distribution of the vMMN is rather typical, with multiple
VMMN studies observing effects in the fronto-central area (Csukly et al., 2013;

Stefanics et al., 2012; S. Wang et al., 2016).

The present study is the first, to our knowledge, to observe a vVMMN (or any MMN)
for an abstract word-pseudoword contrast. Several previous studies have
observed that word deviants elicit larger MMNs than pseudoword deviants (see,
e.g., Politzer-Ahles & Im, 2020, for review and critique of these findings), but
these have always relied on MMNs cued by a low-level physical difference between
the deviant and the standard. For example, Shtyrov and colleagues (2013)
observed MMNs for the contrast between H and K, regardless of whether the
standards and deviants were words or pseudowords. Thus, the effect they report
is not an MMN driven by the difference between word and pseudoword, but an
MMN driven by the difference between the letters H and K.In the present study,
we eliminated clear physical differences which may be the source of the vMMN
elicitation and presented a true lexicality contrast where the only systematic
difference between the standard and deviant was whether it is a word or a

pseudoword.
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Our findings align with a predictive coding framework (Bornkessel-Schlesewsky &
Schlesewsky, 2019; Stefanics et al., 2015), wherein the brain continuously
updates its predictions about upcoming input at multiple levels of representation.
When participants are exposed to a block that overwhelmingly features real words
(or pseudowords), they form an implicit prediction about the lexical status of
impending stimuli. Encountering a deviant category (e.g., a pseudoword
unexpectedly presented amidst repeated word standards) produces a prediction
error, manifesting as a stronger vMMN for items that violate the existing lexical-
semantic expectation. In contrast, Shtyrov et al. (2013) observed ERP differences
between words and pseudowords, but their design did not isolate a mismatch
effect specific to these higher-level lexical representations. The current finding can
address these limitations by demonstrating a vMMN specifically tied to lexical
status, rather than just a general difference in ERP responses to words and
pseudowords. The absence of a vMMN for pseudoword deviants supports
predictive coding theory: robust lexical predictions are only formed for familiar
words with pre-existing representations. Pseudowords, lacking such

representations, cannot generate strong predictions to violate.

The vMMN observed in this study cannot be attributed to differences in
physical, orthographic, phonological, lexical, or semantic properties between the
deviant and critical standard stimuli. Although the stimuli sets included different
"extra" standards, no predictive rule could be formed based on these properties.
Participants cannot notice patterns like a prevalence of certain word endings as
the distinction relied on recognizing contrasts in the frequency of words versus
pseudowords. Moreover, the vMMN cannot be explained by variations in neural
refractoriness between the event-related potentials elicited by deviants and

control standards. This is because both stimulus types were presented with similar
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frequency (45 occurrences per block) within the oddball paradigm. Additionally,
the repetition of some words across blocks (e.g., pakar, petir) does not confound
the results. All stimuli were repeated frequently within blocks, rendering repetition
effects negligible by the time they appear as critical trials. In addition, Naccache
et al. (2002) provided evidence that unattended stimuli do not generate priming
effects, even at short intervals. They demonstrated that when temporal attention
is directed away from stimuli, both response-congruity and physical repetition
priming vanish. Given these findings, long-lag priming effects from stimuli
presented in previous blocks are extremely unlikely, particularly since our stimuli
were presented as unattended standards with long intervals between blocks.
Furthermore, the global imbalance in word vs. pseudoword frequency across the
experiment does not explain the observed asymmetry in vVMMN elicitation. If
overall frequency were the primary driver, pseudoword deviants should elicit a
stronger vMMN. Instead, we observed a vMMN only for word deviants, which were

globally more frequent.

As such, alternative explanations for the observed vMMN should be
considered. The mismatch negativity and its visual counterpart are typically
interpreted as indicators of prediction error in the brain's processing of sensory
information (Garrido et al., 2009; Weber et al., 2018). The human brain can
generate predictions for upcoming visual events not only at the sensory level but
also at higher cognitive levels (Stefanics et al., 2015). The findings suggest that
semantic information from visual words can be rapidly processed without being
indexed by attention, reflecting the implicit mechanisms underlying semantic
processing of visual stimuli and confirming findings from previous studies (Shtyrov

et al., 2013).
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While the prediction error model is widely accepted, an alternative
explanation for MMN/vMMN generation is the adaptation hypothesis (Gu et al.,
2018). This theory proposes that MMN/vVMMN arises from fundamental
neurophysiological mechanisms in the cerebral cortex, such as adaptation and
lateral inhibition (Gu et al., 2018; May & Tiitinen, 2010). According to this view,
frequently presented standard stimuli lead to significant adaptation of neural
ensembles responding to the semantic category information of these standards.
In contrast, neural ensembles responding to the semantic category information of
deviant stimuli are less adapted, resulting in the vMMN effect (Weber et al., 2018).
However, it is crucial to recognize that while the adaptation hypothesis may
contribute to various effects classified as MMNs, it does not fully account for all
findings in the literature. Previous studies have shown that MMN can occur even
when controlling for refractoriness effects, suggesting that the adaptation
mechanism alone is insufficient to explain the phenomenon completely. For
example, some previous MMN studies (e.g. Politzer-Ahles et al., 2016; Schrdger
& Wolff, 1996) have included a "control" block where tokens from each condition
were presented with equal frequency with random order—meaning that each
category was presented at a one out of seven (14.3%) ratio, approximately equal
to the ratio of deviants to standards in normal blocks. Such studies still find an
MMN, which cannot be accounted for as an artifact of N1 differences. What this
literature demonstrates is that many results that look like MMNs actually consist
of two separate but overlapping effects: a residual N1 (which is reduced in
standards but not in deviants, and thus remains after the oddball subtraction
procedure) and a “true” MMN. While many studies have failed to separate these,
the ones that do have found that there is still a “true” MMN separate from the

confounding N1 effect. And in the present study, there is no reason for the N1 to
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be different between deviants and standards (since standard stimuli were
repeated no more often than deviant stimuli), and thus the effect we observed

should be a “true” MMN, rather than a residual N1.

Regardless of the specific neural mechanisms underlying vMMN, the current
results provide evidence for rapid semantic processing of visual words. The vMMN
occurred early and with minimal attentional engagement which suggests that it
may engage automatic or implicit processes (Qin et al., 2021; Stefanics et al.,
2015).

While we did not observe a visual MMN in the word class contrast condition,
it would be rather premature to conclude that higher-level processing such as
recognizing word features do not occur automatically in the visual modality. It
seems to be too early to tell: English speakers were able to subconsciously detect
tense differences in spoken words (Politzer-Ahles & Jap, 2024), and while this is
different from word class, both are abstract linguistic contrasts. We were not able
to find evidence that abstract linguistic information such as the verb-noun contrast
is processed automatically in the visual modality, but the findings extend previous
evidence on automatic lexicality detection of stimuli. The inconsistent result on
abstract linguistic processing could stem from unknown interactions ("hidden
moderators") between the modality, materials, and perhaps even the language at
hand, noting the complete lack of ERP research in Standard Indonesian. Finally,
while our counterbalanced block order (two lists) controlled for sequencing biases,
future studies with larger trial counts could investigate if block order could affect

vMMN elicitation for abstract linguistic contrasts.
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Table 1. Word list for experiment.

Block Type: Word class Word class Type Type
Deviant Type: Verb Noun Word Pseudoword
Critical deviants  pakai pakar pakai pakas
bakar bakat bakar bakan
tarik tarif tarik tarit
Critical pakar pakai pakas pakai
standards bakat bakar bakan bakar
tarif tarik tarit tarik
Extra standards  perak peras pakak  pakar
petir petik petim petir
bahan bahas bahap bahan
bayam bayar bakas bakat
taman tamat taril tarif
tanah tanam tanan tanah
gagak gagal gagat gagal
gugus gugur gugum gugur
makam makan makak makan
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Table 2. Frequencies for the critical deviants and critical standards for the word

class and lexicality contrast blocks

Frequency class* Frequency tokens
pakai 8 129209
bakar 8 124105
tarik 9 51885
pakar 9 50900
bakat 10 33649
tarif 9 83588

* Frequency class is a standardized number assigned to a group of words to
allow comparison across different corpora. The calculation is as follows: The
frequency of the most frequent word in the corpus is divided by the frequency of
the specific word, and log base 2 of the result is rounded up to the closest whole

number (Jap et al., 2022).

34



Word ERP at FZ Pseudoword ERP at FZ

4r 4
g Pseudoword deviant
sl = = Word standard 3 \ = = Pseudoword standard

Word ERP at CZ i Pseudoword ERP at CZ
Pseudoword deviant
3 \ = = Pseudoword standard

4 n n n n L . L 5
-0.1 0 0.1 0.2 0.3 04 0.5 0.6 0.7 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

time=[0.35 0.4]

o

time=[0.25 0.3] time=[0.3 0.35]

Word

time=[0.25 0.3] time=[0.3 0.35]

time=[0.35 0.4]

Pseudoword

Figure 1.

35



Figure 2.

Channel

M
@]
»
T T T T T T T T T

o000
s N N
[

TTUT
LW~
T

-
[s2]
| I A I I I

)

o

™
1

Lexicality vMMN

0.15 0.2 0.25 0.3 0.35
Time (seconds)

0.4

36



Verb ERP at FZ Noun ERP at FZ

‘erb deviant

Noun deviant
== == Verb standard == == Noun standard

Verb ERP at CZ Noun ERP at CZ

06

== == Noun standard

-0.1 0 0.1 0.2 03 04 05 06 0.7 -0.1 0 0.1 0.2 03 04 0.5

time=[0.25 0.3] time=[0.3 0.35] time=[0.35 0.4]

Verb

time=[0.25 0.3] time=[0.3 0.35]

time=[0.35 0.4]

Figure 3.

0.8

0.6

04

0.2

0.2

0.4

0.6

-0.8



Figure captions

Figure 1. ERPs for lexicality contrast at two representative channels (FZ & CZ)
and topographic difference plots (deviant minus standard) showing ERPs for the
250 to 400 ms time window; scale is from -1 to 1 uV.

Figure 2. Raster plot showing which data points (i.e., which electrodes at which
time points) were included in the cluster permutation-tested for the lexicality
contrast collapsed across conditions.

Figure 3. ERPs for word class contrast at two representative channels (FZ & CZ)
and topographic difference plots (deviant minus standard) for the 250 to 400 ms

time window; scale is from -1 to 1 pV.
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